河南省 2025 年普通高等学校

专科毕业生讲入本科阶段学习考试

高等数学

题 号	_	=	Ξ	四	五	总 分
分 值	50	30	50	14	6	150

注意事项:

答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上. 本卷的试题答案必须答在答题卡上,答在试卷上无效.

- 一、选择题(每小题2分,共50分)
- 1. 下列函数为奇函数的是()

A.
$$f(x) = x^3 \sin x$$
 B. $f(x) = \cos(\sin x)$ C. $f(x) = (5^x + 5^{-x})^3$ D. $f(x) = \frac{3^x - 1}{3^x + 1}$

$$2. \lim_{x \to 0} \frac{\arcsin 2x}{3x} = ()$$

A.
$$\frac{2}{3}$$

$$B.\frac{3}{2}$$

3. 当 $x \to 0$ 时,f(x)-1是比 $\sin x$ 高阶的无穷小,且 f(0)=1,则下列选项正确的 是()

A.
$$f'(0) = 1$$

$$B. \lim_{x \to 0} f(x) = 0$$

C.
$$f'(0) = 0$$

$$D. \lim_{x \to 0} \sin f(x) = 0$$

A.
$$f'(0) = 1$$
 B. $\lim_{x \to 0} f(x) = 0$ C. $f'(0) = 0$ D. $\lim_{x \to 0} \sin f(x) = 0$
4. 若 $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 2}, & x \neq 2 \\ 0, & x = 2 \end{cases}$, 则 $f(x)$ 在 $x = 2$ 处是()

A连续占

B.跳跃间断点 C.第二类间断点 D.可去间断点

5.
$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^{2-x} = ()$$

A. e^4 B. e^{-4} C. e^{-1}

 $D.e^2$

6. 若
$$\lim_{x\to 0} \left| \frac{f(x)}{\sin x} \right| = 0$$
,则下列正确的是()

$$A. \lim_{x \to 0} \frac{f(x)}{|x|} = 0$$

B.
$$\lim_{x\to 0} \frac{f(x)}{x\sin x} = 0$$

A.
$$\lim_{x \to 0} \frac{f(x)}{|x|} = 0$$
 B. $\lim_{x \to 0} \frac{f(x)}{x \sin x} = 0$ C. $\lim_{x \to 0} \frac{f(x)}{x(1 - \cos x)} = 0$ D. $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

```
7. 函数 f(x) 二阶可导,且 y = f(e^x),则 y'' = ()
```

A.
$$f''(e^x)$$

B.
$$f''(e^x)e^{2x}$$

C.
$$e^{x} f'(e^{x}) + e^{2x} f''(e^{x})$$

D.
$$e^x f'(e^x) + e^x f''(e^x)$$

8. 函数
$$y = (x^2 - x + 2)x - 3$$
| 的不可导点的个数 ()

9. 函数
$$y = \cos 2x$$
,则 $y^{(2025)} = ($)

A.
$$2^{2025} \sin 2x$$

B.
$$2^{2025} \cos 2x$$

B.
$$2^{2025}\cos 2x$$
 C. $-2^{2025}\cos 2x$ D. $-2^{2025}\sin 2x$

D.
$$-2^{2025} \sin 2x$$

10. 设函数
$$f(x)$$
在[1,3]上满足 $f''(x) < 0$,则 $f'(0)$, $f'(2)$, $f(2) - f(1)$ 的大小顺序()

A.
$$f'(0) > f'(2) > f(2) - f(1)$$

B.
$$f'(0) > f(2) - f(1) > f'(2)$$

C.
$$f'(2) > f'(0) > f(2) - f(1)$$

D.
$$f'(2) > f(2) - f(1) > f'(0)$$

11. 函数
$$y = f(x)$$
, $x \in (a,b)$ 在 $x = x_0$ 处取得最大值,则必有 ()

A.
$$f'(x_0) = 0$$

B.
$$f''(x_0) = 0$$

C.
$$f'(x_0) = 0 \perp f''(x_0) < 0$$

D.
$$f'(x_0) = 0$$
 或 $f'(x_0)$ 不存在

12. 己知
$$f(x) = -2x$$
 ,则 $\int \frac{f(\tan x)}{\sin^2 x - 1} dx =$ ()

A.
$$\tan^2 x + C$$

B.
$$-\tan^2 x + C$$

$$C. \cot^2 x + C$$

B.
$$-\tan^2 x + C$$
 C. $\cot^2 x + C$ D. $-\cot^2 x + C$

13. 设
$$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \ln \sin x dx$$
, $J = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \ln x dx$, $K = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \ln \tan x dx$, ,则 I, J, K 的大小关系()

$$\Delta I < I < K$$

B.
$$I < K < J$$

$$C. K < J < I \qquad D. J < K < I$$

D.
$$J < K < I$$

14.
$$f(x)$$
在 $[a,b]$ 上连续,且 $\int_a^b f(x)dx = 0$,则在 (a,b) 内可能()

A.可能存在一点
$$\xi$$
, 使得 $f(\xi)=0$

B.有唯一的点
$$\xi$$
, 使得 $f(\xi)=0$

C.至少存在一点
$$\xi$$
, 使得 $f(\xi)=0$

D.至少存在两个不同的点
$$\xi_1$$
, $\xi_{,2}$, 使得 $f(\xi_1) = f(\xi_2) = 0$

15.
$$\int_{-1}^{1} \left(xe^{x} + \frac{\sin^{3} x}{\sqrt{x^{2} + 1}} \right) dx = ()$$

- $A. -\frac{2}{a} \qquad B. \frac{2}{a} \qquad C. \frac{\pi}{3}$
- $D.\frac{\pi}{2}$

16. 已知广义积分
$$\int_0^{+\infty} \frac{4}{1+kx^2} dx (k>0)$$
 收敛于 2 ,则 $k=()$

- $A.\pi$
- $C.4\pi^2$
- $D. \pi^2$

17. 空间直线方程为
$$\begin{cases} 2x - y = 0 \\ z = 0 \end{cases}$$
 , 则直线必 ()

A.过原点且垂直于x轴

- B.过原点且垂直于y轴
- C.过点(1,2,0)且垂直于z轴
- D.过点(1,2,1) 且垂直于z轴
- 18. 关于微分方程的下列结论正确的是()
- ①该方程是齐次微分方程

- ②该方程是线性微分方程
- ③该方程是常系数微分方程
- ④该方程是二阶微分方程

- A.(1)(2)
- C.(1)(3)(4)
- D.234
- 19. 用待定系数法求微分方程 $y'' 3y' 4y = xe^{-x}$ 的特解时,其特解 y^* 可设为()
- A. ax + b
- B. $(ax+b)e^{-x}$ C. $x(ax+b)e^{-x}$
- D. $x^{2}(ax+b)e^{-x}$
- 20. 函数 $f(x,y,z) = xy + yz^2 x$ 在点(2,-1,1)处沿 x 轴正方向的方向导数为()
- A. -2

D. 7

21. 空间曲线
$$\begin{cases} x = 4\cos t \\ y = \sin t & \text{在点}(0,1,\frac{\pi}{2}) \text{的法平面方程为} \end{cases} ()$$

$$z = t$$

- A. $4x z + \frac{\pi}{2} = 0$ B. $4y z + \frac{\pi}{2} = 0$ C. $4x z \frac{\pi}{2} = 0$ D. $4y z \frac{\pi}{2} = 0$

- 22. 己知函数 x = x(y,z) 由 $2xz 2xy + \ln y = 0$ 确定,则 $\frac{\partial x}{\partial z} = ($)
- A. $\frac{x}{z-y}$ B. $\frac{y}{y-z}$ C. $\frac{y}{z-x}$ D. $\frac{x}{y-z}$

23. 二次积分
$$\int_0^1 dy \int_{-\sqrt{1-y}}^0 f(x,y) dx = ()$$

A. $\int_{0}^{0} dx \int_{0}^{1-x^2} f(x,y) dy$

B. $\int_{1}^{0} dx \int_{1-x^{2}}^{0} f(x,y) dy$

C. $\int_{0}^{1} dx \int_{1-x^{2}}^{0} f(x, y) dy$

D. $\int_{0}^{1} dx \int_{\sqrt{1-x}}^{0} f(x, y) dy$

24. 求级数
$$\sum_{n=1}^{\infty} \frac{\left(x-2\right)^n}{2n-1}$$
 的收敛域为()

A.
$$(1,3)$$
 B. $[1,3)$ C. $(1,3]$ D. $[1,3]$

25. 设级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,且其和为 S ,则级数 $\sum_{n=1}^{\infty} (u_n - u_{n+1} + 2u_{n+2})$ 收敛于()

A.
$$S + u_1$$
 B. $2S - 2u_2$ C. $2S - u_1 - 2u_2$ D. $S + u_1 - u_2$

26. 若
$$f(x) = \ln x$$
, $f[g(x)] = 2x$,则 $g(x) =$ _____

27. 数列极限
$$\lim_{n\to\infty} \frac{\ln n + (-1)^n}{n^2} =$$

28. 曲线
$$y = e^{-2x} \cos 3x$$
 在点 $(0,1)$ 处的切线方程为_____

29.
$$\int x \ln(1+x^2) dx =$$

30. 函数
$$y = 2x^3 - 6x^2 + 5$$
 的拐点坐标为_____

31. 设
$$\int f(x)dx = x^2 + \ln(2x) + C$$
,则 $f(x) =$ _____

32. 曲线
$$y = \frac{2x^2}{x^2 - x - 2}$$
 的渐近线有_____条

33. 广义积分
$$\int_0^1 \frac{1}{(2-x)\sqrt{1-x}} dx =$$

34. 求微分方程
$$dy - (y + e^x) dx = 0$$
 的通解_____

35. 设平面区域
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
,则二重积分 $\iint_{\Omega} x dx dy =$ ______

36.
$$f(x,y) = x^2 + \tan \frac{xy}{x^2 + y^2}$$
, $\mathbb{Q} \frac{\partial f(x,y)}{\partial x}\Big|_{(1,0)} = \underline{\qquad}$

37. 求极限
$$\lim_{(x,y)\to(0,0)} (x+1) \arctan \frac{1}{x^2+4y^2} = \underline{\hspace{1cm}}$$

38. 已知椭圆
$$L: \frac{x^2}{16} + \frac{y^2}{4} = 1$$
, 逆时针方向, 则 $\oint_L (y + e^x) dx + (2x + \cos y + 2y) dy = ____$

39.
$$\vec{a} = \{1, -3, -2\}, \ \vec{b} = \{2, 1, 0\}, \ \vec{x} (\vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) = \underline{\hspace{1cm}}$$

40. 将函数
$$f(x) = \frac{4}{4-x^2}$$
 展开为 x 的幂级数_____

三、计算题(每小题5分,共50分)

41. 求极限
$$\lim_{x\to 0} \frac{2-\frac{\sin 2x}{x}}{(e^x-1)\arcsin x}$$
.

42. 当 $x \to 0^+$ 时, $(\tan x)^b$ 与 $(1-\cos 2x)^{\frac{1}{b}}$ 都是比x的高阶无穷小,求b的取值范围.

43. 对于函数
$$y = \begin{cases} x = (t+1)^3 + 1 \\ y = \arcsin \sqrt{t} \end{cases}$$
, 求 $\frac{dy}{dx}\Big|_{t=\frac{1}{2}}$.

44. 微分方程 y'' - 3y' - 4y = 0 满足初始条件 $y|_{x=0} = 0, y'|_{x=0} = -5$ 的特解.

45. 求不定积分
$$\int \frac{e^x}{1+\sqrt{2e^x+1}} dx$$
.

46. 设
$$f(x) = \begin{cases} \sqrt{4-x^2}, -2 < x < 2 \\ x, x \ge 2 \end{cases}$$
, 求 $\int_{-2}^2 f(x+2) dx$.

47. 直线
$$L: \frac{x-1}{1} = \frac{y}{4} = \frac{z+1}{-1}$$
 与平面方程 $\pi: 2x + 2y - z - 1 = 0$ 相交

- (1) 求直线L与平面 π 的夹角;
- (2) 求通过直线 L 与平面 π 的交点且与直线 L 垂直的平面方程.

48. 设二元函数
$$z = (x - y)\sin(xy)$$
, 求 $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$.

49. 计算二重积分
$$I = \iint_D x^2 e^{-\frac{y}{x}} dx dy$$
, 其中 D 是由直线 $y = 2x, y = 0, x = 1$ 及 $x = 2$ 所围成的闭区域.

50. 求幂级数
$$1+\frac{x^2}{2}+\frac{x^4}{4}+\cdots+\frac{x^{2n}}{2n}+\cdots$$
在其收敛区间 $(-1,1)$ 上的和函数.

四、应用题(每小题7分,共14分)

- 51. 设曲线 $y = e^{2x}$ 、 $y = e^{-x}$ 及 x = 2 所围成的区域为 D,求其区域 D 的面积及绕 x 轴旋转一周而形成的体积。
- 52. 将长为4m的铁丝剪成两段,一段围成正方形,余下的围成圆周,如何选择边长与半径,可使两个图形的面积之和为最小。

五、证明题(6分)

53. f(x)是定义在 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的连续奇函数,在 $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ 内可导,证明:至少存在一点 $\xi \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \ \$ 使得 $f'(\xi)\sin(2\xi) = -2f(\xi)$.