2025 考研数学(二) 真题

试卷及解析

- 一、选择题: $1\sim10$ 小题,每小题 5 分,共 50 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.
- 1. 设函数 z = z(x, y) 由 $z + \ln z \int_{y}^{x} e^{-t^{2}} dt = 0$ 确定,则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} =$

A.
$$\frac{z}{z+1} \left(e^{-x^2} - e^{-y^2} \right)$$
.

B.
$$\frac{z}{z+1} \left(e^{-x^2} + e^{-y^2} \right)$$
.

C.
$$-\frac{z}{z+1}(e^{-x^2}-e^{-y^2})$$
.

D.
$$-\frac{z}{z+1}(e^{-x^2}+e^{-y^2})$$
.

1.【答案】A

【解析】 $z + \ln z - \int_y^x e^{-t^2} dt = 0$, 分别对x, y求偏导, 得:

$$\frac{\partial z}{\partial x} + \frac{1}{z} \frac{\partial z}{\partial x} - e^{-x^2} = 0 \Rightarrow \frac{\partial z}{\partial x} = \frac{z}{z+1} e^{-x^2}$$

$$\frac{\partial z}{\partial y} + \frac{1}{z} \frac{\partial z}{\partial y} + e^{-y^2} = 0. \Rightarrow \frac{\partial z}{\partial y} = \frac{-z}{z+1} e^{-y^2}$$

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{z}{z+1} \left(e^{-x^2} - e^{-y^2} \right)$$

- 2.已知函数 $f(x) = \int_0^x e^{t^2} \sin t dt$, $g(x) = \int_0^x e^{t^2} dt \cdot \sin^2 x$, 则
 - A. $x = 0 \not\in f(x)$ 的极值点, 也是 g(x) 的极值点.
 - B. x = 0 是 f(x) 的极值点,(0,0) 是曲线 y = g(x) 的拐点.
 - C. x = 0 是 f(x) 的极值点, (0,0) 是曲线 y = f(x) 的拐点.

D. (0,0) 是曲线 y = f(x) 的拐点, (0,0) 也是曲线 y = g(x) 的拐点.

【答案】B

【解析】

$$f'(x) = e^{x^2} \sin x, f''(x) = 2xe^{x^2} \sin x + e^{x^2} \cos x$$

$$f'(0) = 0, f''(0) = 1 > 0.$$

x=0 是 f(x) 的极值点.

$$g'(x) = e^{x^2} \sin^2 x + \sin 2x \int_0^x e^{t^2} dt$$
,

$$g''(x) = e^{x^2} \sin 2x + 2xe^{x^2} \sin^2 x + \sin 2xe^{x^2} + 2\cos 2x \int_0^x e^{t^2} dt$$

$$g'(0) = 0$$
, $g''(0) = 0$, $g'''(0) > 0$.

(0,0) 是 y = g(x) 的拐点.

3.如果对微分方程 y''-2ay'+(a+2)y=0 任一解 y(x),反常积分 $\int_0^{+\infty}y(x)\mathrm{d}x$ 均收敛,则 a 的取值范围为

$$A.(-2,-1].$$

B.
$$(-\infty, -1]$$
.

$$C.(-2, 0).$$

$$D.(-\infty, 0).$$

3. 【答案】C

【解析】当a=-2时, $y^{''}+4y^{'}=0$,通解: $c_1+c_2e^{-4t}$, $c\neq 0$ 时, $\int_0^{+\infty}(c_1+c_2e^{-4x})dx$ 不收敛.

故B、D排除.

当
$$a = -\frac{1}{2}$$
时, $y'' + y' + \frac{3}{2}y = 0$,通解: $y(t) = e^{-\frac{1}{2}t} \left(a_1 \cos\left(\frac{\sqrt{5}}{2}t\right) + B\left(\sin\frac{\sqrt{5}}{2}t\right) \right)$

 $\int_{0}^{+\infty} y(x) dx$ 收敛.

4.设函数 f(x),g(x)在 x=0 某去心邻域内有定义且恒不为 0,若 $x\to 0$ 时,f(x)是 g(x) 的高阶无穷小,则当 $x\to 0$ 时

A.
$$f(x)+g(x)=o(g(x))$$
.

B.
$$f(x)g(x) = o(f^2(x))$$
.

C.
$$f(x) = O(e^{g(x)} - 1)$$
.

D.
$$f(x) = o(g^2(x))$$
.

4. 【答案】C

【解析】由题易知, $x \to 0$ 时, f(x)是g(x)高阶无穷小.

则有
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$$
 及 $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} g(x) = 0$.

又f(x), g(x)在x = 0某去心邻域内有定义且不恒等于 0.

故对于A选项,等式两端同除 g(x) 得:

$$\frac{f(x)}{g(x)} + 1 = \frac{o[g(x)]}{g(x)}$$

取极限得

$$\lim_{x\to 0} \left(\frac{f(x)}{g(x)} + 1\right) = \lim_{x\to 0} \frac{o[g(x)]}{g(x)}.$$

即0 + 1 = 0, 显然 A 不成立.

对于 B 选项, 等式两端同除 $f^2(x)$ 得

$$\frac{g(x)}{f(x)} = \frac{d[f^2(x)]}{f^2(x)}$$

两端取极限得 $\lim_{x\to 0} \frac{g(x)}{f(x)} = \lim_{x\to 0} \frac{o[f^2[x]}{f^2(x)}$,即 $\infty = 0$,显然不成立.

对于 C 选项, 等式两端同除 g(x) 得

$$\frac{f(x)}{g(x)} = \frac{o\left[e^{g(x)} - 1\right]}{g(x)}$$

取极限得 $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{o[e^{g(x)}-1]}{g(x)} = \lim_{x\to 0} \frac{o[g(x)]}{g(x)}$ 显然有0=0,故c正确.

对于 D 等式两端同除g(x)得

$$\frac{f(x)}{g^2(x)} = \frac{o[g^2(x)]}{g^2(x)}.$$

取极限得 $\lim_{x\to 0} \frac{f(x)}{g^2(x)} = \lim_{x\to 0} \frac{o[g^2(x)]}{g^2(x)}$,显然不成立.

综上选 C.

5. 设函数 f(x,y) 连续,则 $\int_{-2}^{2} dx \int_{4-x^2}^{4} f(x,y) dy =$

A.
$$\int_{0}^{4} \left[\int_{-2}^{-\sqrt{4-y}} f(x,y) dx + \int_{\sqrt{4-y}}^{2} f(x,y) dx \right] dy$$
.

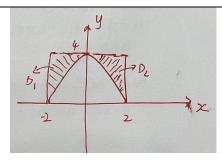
B.
$$\int_0^4 \left[\int_{-2}^{\sqrt{4-y}} f(x,y) dx + \int_{\sqrt{4-y}}^2 f(x,y) dx \right] dy$$
.

C.
$$\int_0^4 \left[\int_{-2}^{-\sqrt{4-y}} f(x,y) dx + \int_2^{\sqrt{4-y}} f(x,y) dx \right] dy$$
.

D.
$$2\int_0^4 dy \int_{\sqrt{4-y}}^2 f(x,y) dx$$
.

【答案】A

【解析】由题易知,此二重积分积分区域为



 $D = \{(x, y) | 4 - x^2 \le y \le 4, -2 \le x \le 2 \}$, 对应图像为上图所示。

$$\text{id } D_1 = \left\{ (x,y) \left| 4 - x^2 \le y \le 4, -2 \le x \le 0 \right. \right\}, \quad D_2 = \left\{ (x,y) \left| 4 - x^2 \le y \le 4, 0 \le x \le 2 \right. \right\}, \quad \text{\mathbb{H}}$$

$$I=\int_{-2}^{2} dx \int_{4-x^{2}}^{4} f(x,y) dy , 则 I=\iint_{D_{1}} f(x,y) d\sigma + \iint_{D_{2}} f(x,y) d\sigma , 交换积分次序得$$

$$I = \int_0^4 dy \int_{-2}^{-\sqrt{4-y}} f(x, y) dx + \int_0^4 dy \int_{\sqrt{4-y}}^2 f(x, y) dx$$
$$= \int_0^4 \left[\int_{-2}^{-\sqrt{4-y}} f(x, y) dx + \int_{\sqrt{4-y}}^2 f(x, y) dx \right] dy$$

故A正确。

6. 设单位质点 P,Q 分别位于点 (0,0) 和 (0,1) 处,P 从点 (0,0) 出发沿x 轴正向移动,记G 为引力常量,则当质点 P 移动到点 (l,0) 时,克服质点 Q 的引力所做的功为 (

$$A. \int_0^l \frac{G}{x^2 + 1} dx$$

B.
$$\int_0^l \frac{Gx}{(x^2+1)^{\frac{3}{2}}} dx$$

C.
$$\int_0^l \frac{G}{(x^2+1)^{\frac{3}{2}}} dx$$

D.
$$\int_0^1 \frac{G(x+1)}{(x^2+1)^{\frac{3}{2}}} dx$$

【答案】A

【解析】由题可知,其对应如图所示. 单位质点 P 与单位质点 Q 之间的引力为

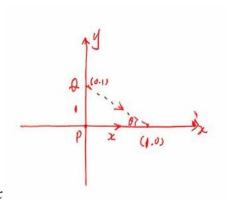
$$F = G \frac{1 \cdot 1}{r^2}$$

其中r为两质点间的距离.

旦由图可知 $r^2 = x^2 + 1$

又引力 F 在x方向上的力投影为 $F_x = F\cos \theta = \frac{x}{\sqrt{1+x^2}}F$.

故克服引力做功为:



$$W = \int_0^1 F_x dx = \int_0^1 \frac{G}{(x^2 + 1)} \frac{x}{\sqrt{1 + x^2}} dx = \int_0^1 \frac{Gx}{(1 + x^2)^{\frac{3}{2}}} dx$$

7.设函数 f(x) 连续,给出下列 4 个条件:

①
$$\lim_{x\to 0} \frac{|f(x)|-f(0)}{x}$$
存在;

②
$$\lim_{x\to 0} \frac{f(x)-|f(0)|}{x}$$
存在;

③
$$\lim_{x\to 0} \frac{|f(x)|}{r}$$
存在,

④
$$\lim_{x\to 0} \frac{|f(x)-f(0)|}{x}$$
存在.

其中可得到"f(x)在x=0处可导"的条件个数为

A.1.

B.2.

C.3.

D.4.

7.【答案】B

【解析】①
$$\lim_{x\to 0} \frac{|f(x)|-f(0)}{x} = A.$$

⇒
$$|f(0)| - f(0) = 0$$
 ⇒ $f(0) = |f(0)|$ ⇒ $f(0) = 0$. 或 $f(0)$ 为正.

数学试题 第6页(共3页)

若
$$f(0)$$
为正,则当 $x \to 0$ 时.有 $f(x) > 0$.则 $\lim_{x \to 0} \frac{|f(x) - f(0)|}{x} = \lim_{x \to 0} \frac{f(x) - f(0)|}{x} = A \Rightarrow f'(0) = A$
若 $f(0) = 0$,由 $\lim_{x \to 0} \frac{|f(x)| - f(0)|}{x} = \lim_{x \to 0} \frac{|f(x)|}{x} = A$

$$\Rightarrow \frac{\lim_{x\to 0^+} \left| \frac{f(x)}{x} \right| = A}{\lim_{x\to 0^-} \left| \frac{f(x)}{x} \right| = A} \Rightarrow \Xi A = 0, \quad \text{M} f'(0)$$
 $\exists A \neq 0, \quad \text{M} f'(0)$ $\exists A \neq 0, \quad \text{M} f'(0)$

②由
$$\lim_{x\to 0} \frac{f(x)-|f(0)|}{x} = A \Rightarrow f(0) = |f(0)|$$
 , $\bigcup f(0) = 0$ 或 $f(0) > 0$

若
$$f(0) = 0$$
,则 $A = \lim_{x \to 0} \frac{f(x) - |f(0)|}{x} = \lim_{x \to 0} \frac{f(x)}{x} = f'(0)$

若
$$f(0) > 0$$
,则 $A = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$ 从而②成立.

- ③由 $\lim_{x\to 0} \frac{|f(x)|}{x}$ 存在,则 $|f(0)| = 0 \Rightarrow f(0) = 0$. 则同①,从而③错.
- ④ $\lim_{x\to 0} \frac{|f(x)|-|f(0)|}{x}$ 存在,则|f(x)|在x = 0处可导 $\Rightarrow f(x)$ 在x = 0处可导,④正确.

从而①③错误, ②④正确, 选 B.

8.设矩阵
$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$
 有一个正特征值和两个负特征值,则()

B.
$$a < 4, b > 0$$

D.
$$a < 4, b < 0$$

【答案】D

【解析】

令
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$
,为实对称矩阵,对应二次型为 $f(x_1, x_2, x_3) = x_1^2 + ax_2^2 + bx_3^2 + 4x_1x_2$,

则用配方法将其化为标准型, $f(x_1,x_2,x_3)=(x_1+2x_2)^2+(a-4)x_2^2+bx_3^2$ 。已知A有一正两负特征值,则

$$\begin{cases} a-4<0 \\ b<0 \end{cases} \Rightarrow \begin{cases} a<4 \\ b<0 \end{cases}, \text{ b. b.}$$

9. 下列矩阵中,可以经过若干初等行变换得到矩阵 $\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 的是

A.
$$\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 2 & 1 & 3 \\
2 & 3 & 1 & 4
\end{pmatrix}$$
B.
$$\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 1 & 2 & 5 \\
1 & 1 & 1 & 3
\end{pmatrix}$$
B.
$$\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 1 & 2 & 5 \\
1 & 1 & 1 & 3
\end{pmatrix}$$
B.
$$\begin{pmatrix}
1 & 1 & 2 & 3 \\
1 & 2 & 2 & 3 \\
2 & 3 & 4 & 6
\end{pmatrix}$$
D.
$$\begin{pmatrix}
1 & 1 & 2 & 3 \\
1 & 2 & 2 & 3 \\
2 & 3 & 4 & 6
\end{pmatrix}$$

9.【答案】B

【解析】

A 选项:
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 3 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

B 选项:
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 5 \\ 1 & 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

C 选项:
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

D 选项:
$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 2 & 3 \\ 2 & 3 & 4 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

10.设3阶矩阵 A, B 满足 r(AB) = r(BA) + 1, 则

A.方程组(A+B)x=0只有零解.

B.方程组 Ax = 0 与方程组 Bx = 0 均只有零解.

C. 方程组 Ax = 0 与方程组 Bx = 0 没有公共非零解.

D.方程组 ABAx = 0 与方程组 BABx = 0 有公共非零解.

【答案】D

【解析】

取
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}$,则 $AB = \begin{pmatrix} 3 & 0 & -3 \\ 3 & 0 & -3 \\ 3 & 0 & 3 \end{pmatrix}$, $r(AB) = 1$.

$$BA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ r(BA) = 0.4$$
 # R C.

$$A + B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix}, r(A + B) = 1排除 A,故选 D.$$

二、填空题: 11~16 小题, 每小题 5 分, 共 30 分.

11.设
$$\int_{1}^{+\infty} \frac{a}{x(2x+a)} dx = \ln 2$$
,则 $a =$ _____.

【解析】a=2.

原式

$$= \int_{1}^{+\infty} \frac{a}{x(2x+a)} dx = \ln x - \ln(2x+a) \Big|_{1}^{+\infty} = \int_{1}^{+\infty} \frac{a}{x(2x+a)} dx = \ln x - \ln(2x+a) \Big|_{1}^{+\infty}$$

$$= \lim_{x \to +\infty} \ln \frac{x}{2x+a} - \ln \frac{1}{2+a} = \lim_{x \to +\infty} \frac{x}{x+a} + \ln(2+a)$$

12.曲线
$$y = \sqrt[3]{x^3 - 3x^2 + 1}$$
 的渐近线方程为 ______.

【解析】y = x - 1

可得无水平渐近线、铅直渐近线,故求斜渐近线即可.

$$k = \lim_{x \to \infty} \frac{\sqrt[3]{x^3 - 3x^2 + 1}}{x} = \lim_{x \to \infty} \sqrt[3]{\frac{x^2 - 3x^2 + 1}{x^3}} = 1$$

$$b = \lim_{x \to \infty} \sqrt[3]{x^3 - 3x^2 + 1} - x = \lim_{x \to \infty} x \cdot \left(\left(1 + \frac{1 - 3x^2}{x^3} \right)^{\frac{1}{3}} - 1 \right)$$
$$= \lim_{x \to \infty} x \cdot \frac{1}{3} \cdot \frac{1 - 3x^2}{x^3} = -1$$

故y = x - 1.

13.
$$\lim_{n \to \infty} \frac{1}{n^2} \left[\ln \frac{1}{n} + 2 \ln \frac{2}{n} + \dots + (n-1) \ln \frac{n-1}{n} \right] = \underline{\qquad}$$
.

【解析】

$$\begin{split} &\lim_{n \to \infty} \frac{1}{n^2} \left[\ln \frac{1}{n} + 2 \ln \frac{2}{n} + \dots + (n-1) \ln \frac{n-1}{n} \right] \\ &= \lim_{n \to \infty} \left(\frac{1}{n} \ln \frac{1}{n} + \frac{2}{n} \ln \frac{2}{n} + \dots + \frac{n-1}{n} \ln \frac{n-1}{n} \right) \cdot \frac{1}{n} \\ &= \lim_{n \to \infty} \left(\frac{1}{n} \ln \frac{1}{n} + \frac{2}{n} \ln \frac{2}{n} + \dots + \frac{n-1}{n} \ln \frac{n-1}{n} + \frac{n}{n} \ln \frac{n}{n} \right) \cdot \frac{1}{n} \\ &= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n} \ln \frac{i}{n} \cdot \frac{1}{n} \\ &= \int_{0}^{1} x \ln x dx \\ &= \frac{1}{2} \int_{0}^{1} \ln x dx^{2} = \frac{1}{2} \left[x^{2} \ln x |_{0}^{1} - \int_{0}^{1} x^{2} \cdot \frac{1}{x} dx \right) \\ &= -\frac{1}{2} \int_{0}^{1} x dx = -\frac{1}{4} \end{split}$$

14.已知函数
$$y = y(x)$$
由
$$\begin{cases} x = \ln(1+2t), \\ 2t - \int_1^{y+t^2} e^{-u^2} du = 0 \end{cases}$$
 确定,则 $\frac{dy}{dx}\Big|_{t=0} = \underline{\qquad}$.

【解析】

$$\begin{cases} x = \ln(1+2t) \, \text{(1)}, \\ 2t - \int_{1}^{y+t^{2}} e^{-u^{2}} du = 0 \, \text{(2)}, \end{cases}$$

由②两边关于t求导,则 $2-e^{-(y+t^2)^2}\cdot\left(\frac{dy}{dt}+2t\right)=0.$

当
$$t=0$$
 时, $y=1$, $2-e^{-1}\cdot\frac{dy}{dt}=0\Rightarrow \frac{dy}{dt}=2e$.

$$|| \frac{dy}{dx} \Big|_{t=0} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \Big|_{t=0} = \frac{2e}{2} = e.$$

15.微分方程(2y-3x)dx+(2x-5y)dy=0满足条件y(1)=1的解为_____.

【答案】
$$3x^2 - 4xy + 5y^2 = 4$$

【解析】

解:

$$(2y-3x)dx + (2x-5y)dy = 0$$

$$\Rightarrow 2ydx + 2xdy - 3xdx - 5ydy = 0$$

$$\Rightarrow d(2xy) - d(\frac{3}{2}x^2) - d(\frac{5}{2}y^2) = 0$$

即

$$d(2xy - \frac{3}{2}x^2 - \frac{5}{2}y^2) = 0$$
$$\Rightarrow 2xy - \frac{3}{2}x^2 - \frac{5}{2}y^2 = c$$

又因为

$$y(1) = 1$$

则

$$2 - \frac{3}{2} - \frac{5}{2} = c, \Rightarrow c = -2$$

即

$$2xy - \frac{3}{2}x^2 - \frac{5}{2}y^2 = -2$$
$$3x^2 - 4xy + 5y^2 = 4$$

则所求方程为 $y = \frac{2x + \sqrt{20 - 11x^2}}{5}$.

16. 设矩阵 $A = (a_1, a_2, a_3, a_4)$, 若 a_1, a_2, a_3 线性无关,且 $a_1 + a_2 = a_3 + a_4$,则方程组 $Ax = a_1 + 4a_4$ 的通解为 x =______.

【答案】
$$k \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix}$$
, k 为任意常数

【解析】由于 $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$,故 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关;且已知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,

则
$$r(A) = 3$$
 。 那 么 $Ax = \alpha_1 + 4\alpha_4$ 等 价 于 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ · $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix} = \alpha_1 + 4\alpha_4$, 故 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix}$ 是

 $Ax = \alpha_1 + 4\alpha_4$ 的一个特解。 又因为 $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$,即 $\alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$,则

$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4) \cdot \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = 0 \ \text{o} \ \text{由} \ s = n-r(A) = 4-3 = 1$$
 可得,
$$\begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \not = Ax = 0$$
 的一个基础解

系,故 $Ax = \alpha_1 + 4\alpha_4$ 的通解为

$$k \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix}, 其中 k 为任意常数。$$

三、解答题: 17~22 小题, 共 70 分. 解答应写出文字说明、证明过程或演算步骤.

17. (本题满分 10 分)

计算
$$\int_0^1 \frac{1}{(x+1)(x^2-2x+2)} dx$$
.

17. 解:

$$\int_{0}^{1} \frac{1}{(x+1)(x^{2}-2x+2)} dx = \int_{0}^{1} \left(\frac{A}{x+1} + \frac{Bx+C}{x^{2}-2x+2}\right) dx$$

$$= \int_{0}^{1} \left(\frac{\frac{1}{5}}{x+1} + \frac{-\frac{1}{3}x + \frac{3}{5}}{x^{2}-2x+2}\right) dx$$

$$= \frac{1}{5} \ln|1+x| \Big|_{0}^{1} - \frac{1}{10} \ln|x^{2}-2x+2| \Big|_{0}^{1} + \frac{2}{5} \arctan(x-1) \Big|_{0}^{1} = \frac{3}{0} \ln 2 + \frac{1}{10} \pi.$$

18. (本题满分12分)

设函数
$$f(x)$$
 在 $x = 0$ 处连续,且 $\lim_{x\to 0} \frac{xf(x) - e^{2\sin x} + 1}{\ln(1+x) + \ln(1-x)} = -3$.

证明 f(x) 在 x = 0 处可导,并求 f'(0).

18 解:

已知
$$\ln(1+x) + \ln(1-x) = x - \frac{1}{2}x^2 + o(x^2) - x - \frac{1}{2}x^2 + o(x^2) = -x^2 + o(x^2)$$

 $e^{2\sin x} = 1 + 2\sin x + \frac{1}{2}(2\sin x)^2 + o(x^2) = 1 + 2\sin x + 2\sin^2 x + o(x^2)$
因此, $-3 = \lim_{x \to 0} \frac{xf(x) - e^{2\sin x} + 1}{-x^2} = \lim_{x \to 0} \frac{xf(x) - (1 + 2\sin x + 2\sin^2 x + o(x^2)) + 1}{-x^2}$
 $= \lim_{x \to 0} \frac{xf(x) - 2\sin x}{x^2} + \lim_{x \to 0} \frac{-2\sin^2 x}{x^2}$

可以得出
$$\lim_{x\to 0} \frac{xf(x)-2\sin x}{-x^2} = -5$$
, $\lim_{x\to 0} \frac{xf(x)-2\left(x-\frac{1}{6}x^3+o\left(x^3\right)\right)}{x^2} = 5$, 进一步可以得出 $\lim_{x\to 0} \frac{xf(x)-2x}{x^2} = 5$,以及 $\lim_{x\to 0} \frac{f(x)-2}{x} = 5$, $\lim_{x\to 0} [f(x)-2] = 0$, 可得 $\lim_{x\to 0} f(x) = 2 = f(0)$, 故 $f'(0) = \lim_{x\to 0} \frac{f(x)-2}{x} = 5$ 。

19. (本题满分 12 分)

设函数 f(x,y) 可微,且满足 $df(x,y) = -2xe^{-y}dx + e^{-y}(x^2 - y - 1)dy, f(0,0) = 2, 求 f(x,y),并求 <math>f(x,y)$ 的极值.

19. 解:

$$\frac{\partial f}{\partial x} = -2xe^{-y} \Rightarrow f(x,y) = -x^2e^{-y} + \varphi(y). \quad \boxed{y} \quad \frac{\partial f}{\partial y} = x^2e^{-y} + \varphi'(y) = e^{-y}x^2 - (y+1)e^{-y}$$

$$\boxed{y} \quad \varphi'(y) = -(y+1)e^{-y}$$

$$\Rightarrow \varphi(y) = (y+2)e^{-y} + C$$

则

$$f(x,y) = -x^2 e^{-y} + (y+2)e^{-y} + C$$

 $\nabla f(0,0) = 2, \Rightarrow C = 0$

則
$$f(x, y) = -x^2 e^{-y} + (y+2)e^{-y}$$
.

$$\begin{cases} \frac{\partial f}{\partial x} = -2xe^{-y} = 0\\ \frac{\partial f}{\partial y} = e^{-y}(x^2 - y - 1) = 0 \end{cases} \Rightarrow \begin{cases} x = 0\\ y = -1 \end{cases}$$

则驻点(0,-1)

$$f_{xx} = -2e^{-y}, f_{xy} = 2xe^{-y}, f_{yy} = e^{-y}(x^2 - y - 1) - e^{-y} = e^{-y}(x^2 - y)$$

在点 (0, -1) 处
$$A = -2e, B = 0, C = -e$$

则 $AC - B^2 > 0, A < 0,$ 从而 f(x,y)在 (0,-1) 处有极大值,且极大值为 f(0,-1) = e

20. (本题满分12分)

已知平面有界区域 $D = \{(x,y) | x^2 + y^2 \le 4x, x^2 + y^2 \le 4y\}$, 计算 $\iint_D (x-y)^2 dxdy$.

【答案】
$$12\pi - \frac{16}{3}$$

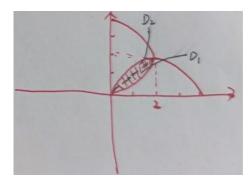
由题可知, 积分区域 $D = \{(x,y)|(x-2)^2 + y^2 \le 2^2, x^2 + (y-2)^2 \le 2^2\}$

对应图形为右图所示,

显然积分区域关于 y = x 对称

$$\exists D_1 = \{(x, y) | x^2 + (y - 2)^2 \le 2^2, y \le x\}$$

$$D_2 = \{(x, y) | (x-2)^2 + y^2 \le 2^2, y \ge x \}$$



故
$$I = \iint_D (x - y)^2 dx dy = \iint_{D_1} (x - y)^2 dx dy + \iint_{D_2} (x - y)^2 dx dy$$

= $2\iint_D (x - y)^2 dx dy$

令
$$x = r \cos \theta. y = r \sin \theta$$
 则在积分区域 D_1 上有
$$\begin{cases} 0 \leqslant r \leqslant 4 \cos \theta \\ 0 \leqslant \theta \leqslant \frac{\pi}{4} \end{cases}$$

21. (本题满分12分)

设函数 f(x) 在区间 (a,b) 内可导.证明导函数 f'(x) 在 (a,b) 内严格单调增加的充分必要条件是:

对
$$(a,b)$$
 内任意的 x_1, x_2, x_3 ,当 $x_1 < x_2 < x_3$ 时, $\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}$.

解: 充分性: 若对(a,b)内任意的 x_1,x_2,x_3 , 当 $x_1 < x_2 < x_3$ 时,都有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

(a,b) 内取任意的 $x_1 < x_2 < x_3 < x_4 < x_5$,有则在

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2} < \frac{f(x_4) - f(x_3)}{x_4 - x_3} < \frac{f(x_5) - f(x_4)}{x_5 - x_4}$$

在
$$\frac{f(x_2)-f(x_1)}{x_2-x_1} < \frac{f(x_3)-f(x_2)}{x_3-x_2}$$
 两边同时令 $x_2 \to x_1^+$, 得

$$f_{+}'(x_1) \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$
, 两边同时令 $\frac{x_2 \to x_3}{x_3 - x_1}$, 得 $\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le f_{-}'(x_3)$, 即

$$f_{+}'(x_1) \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le f_{-}'(x_3)$$
,同理可得 $f_{+}'(x_3) \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le f_{-}'(x_5)$.因为

$$\frac{f(x_3)-f(x_1)}{x_3-x_1} < \frac{f(x_5)-f(x_3)}{x_5-x_3}$$
,所以 $f_+'(x_1) \le f_-'(x_5)$.由 x_1, x_5 的任意性,可得 $f'(x)$ 在

(a,b)内严格单调递增,充分性得证。

再证必要性,即已知 f'(x) 单调递增,在 $[x_1,x_2]$, $[x_2,x_3]$ 上分别使用拉格朗日中值定理, 知存在 $\xi_1 \in (x_1,x_2)$, $\xi_2 \in (x_2,x_3)$,使

$$f'(\xi_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}, \quad f'(\xi_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2},$$

 $_{\forall \text{ 由}} f'(x)$ 单调递增,且 $\xi_1 < \xi_2$ 知, $f'(\xi_1) < f'(\xi_2)$,即

$$\frac{f(x_2)-f(x_1)}{x_2-x_1} < \frac{f(x_3)-f(x_2)}{x_3-x_2}$$
, 必要性得证。

综上所述, 充要条件得证。

22. (本题满分 12 分)

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 1 & 1 \\ -2 & 1 & a \end{bmatrix}$$
与 $\mathbf{B} = \begin{bmatrix} k & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 合同.

- (1)求a的值及k的取值范围;
- (2)若存在正交矩阵 \mathbf{Q} ,使得 $\mathbf{Q}^{\mathrm{T}}A\mathbf{Q} = \mathbf{B}$,求k及 \mathbf{Q} .
- (1) A 与 B 合同知, 二者有相同的正负惯性指数

显然, B 的特征值为 K、6、0, 故 A 有特征值 0.故 |A| = 0.

计算得 |A| = -3(a-4) , 即有 a = 4.

此时 $|\lambda E - A| = \lambda(\lambda - 3)(\lambda - 6)$.

知A的特征值为 3、6、0. P=2. 故 k>0.

(2)由 $Q^{T}AQ = B$, 知 $Q^{-1}AQ = B$.

故A、B相似,特征值相同,故 k=3.对 $A:\lambda=3$ 时,解 (3E-A)X=0,

得
$$c_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\lambda = 6$ 时,解 $(6E - A)x = 0$,得 $c_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

$$\lambda = 0$$
时,解 $(0 \cdot E - A)x = 0$ 得 $c_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

再单位化得:
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}.$$